Axioms for Lattices and Boolean Algebras

Axioms for Lattices and Boolean Algebras

eBook - 2008
Rate this:
The importance of equational axioms emerged initially with the axiomatic approach to Boolean algebras, groups, and rings, and later in lattices. This unique research monograph systematically presents minimal equational axiom-systems for various lattice-related algebras, regardless of whether they are given in terms of "join and meet" or other types of operations such as ternary operations. Each of the axiom-systems is coded in a handy way so that it is easy to follow the natural connection among the various axioms and to understand how to combine them to form new axiom systems. A new topic in this book is the characterization of Boolean algebras within the class of all uniquely complemented lattices. Here, the celebrated problem of E V Huntington is addressed, which - according to G Gratzer, a leading expert in modern lattice theory - is one of the two problems that shaped a century of research in lattice theory. Among other things, it is shown that there are infinitely many non-modular lattice identities that force a uniquely complemented lattice to be Boolean, thus providing several new axiom systems for Boolean algebras within the class of all uniquely complemented lattices. Finally, a few related lines of research are sketched, in the form of appendices, including one by Dr Willian McCune of the University of New Mexico, on applications of modern theorem-proving to the equational theory of lattices.
Publisher: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008
ISBN: 9789812834553
Characteristics: 1 online resource
Additional Contributors: Rudeanu, Sergiu


From the critics

Community Activity


Add a Comment

There are no comments for this title yet.

Age Suitability

Add Age Suitability

There are no age suitabilities for this title yet.


Add a Summary

There are no summaries for this title yet.


Add Notices

There are no notices for this title yet.


Add a Quote

There are no quotes for this title yet.

Explore Further


Subject Headings


Find it at SPL

To Top